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Loal Reasoning about Programs that AlterData StruturesPeter O'Hearn1, John Reynolds2, and Hongseok Yang31 Queen Mary, University of London2 Carnegie Mellon University3 University of Birmingham and University of Illinois at Urbana-ChampaignAbstrat. We desribe an extension of Hoare's logi for reasoning aboutprograms that alter data strutures. We onsider a low-level storagemodel based on a heap with assoiated lookup, update, alloation anddealloation operations, and unrestrited address arithmeti. The asser-tion language is based on a possible worlds model of the logi of bunhedimpliations, and inludes spatial onjuntion and impliation onne-tives alongside those of lassial logi. Heap operations are axiomatizedusing what we all the \small axioms", eah of whih mentions only thoseells aessed by a partiular ommand. Through these and a number ofexamples we show that the formalism supports loal reasoning: A spei-�ation and proof an onentrate on only those ells in memory that aprogram aesses.This paper builds on earlier work by Burstall, Reynolds, Ishtiaq andO'Hearn on reasoning about data strutures.1 IntrodutionPointers have been a persistent trouble area in program proving. The main diÆ-ulty is not one of �nding an in-priniple adequate axiomatization of pointer op-erations; rather there is a mismath between simple intuitions about the way thatpointer operations work and the omplexity of their axiomati treatments. Forexample, pointer assignment is operationally simple, but when there is aliasing,arising from several pointers to a given ell, then an alteration to that ell maya�et the values of many syntatially unrelated expressions. (See [20, 2, 4, 6℄for disussion and referenes to the literature on reasoning about pointers.)We suggest that the soure of this mismath is the global view of statetaken in most formalisms for reasoning about pointers. In ontrast, programmersreason informally in a loal way. Data struture algorithms typially work byapplying loal surgeries that rearrange small parts of a data struture, suh asrotating a small part of a tree or inserting a node into a list. Informal reasoningusually onentrates on the e�ets of these surgeries, without pituring the entirememory of a system. We summarize this loal reasoning viewpoint as follows.To understand how a program works, it should be possible for reasoningand spei�ation to be on�ned to the ells that the program atually a-esses. The value of any other ell will automatially remain unhanged.
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Loal reasoning is intimately tied to the omplexity of spei�ations. Often, aprogram works with a irumsribed olletion of resoures, and it stands toreason that a spei�ation should onentrate on just those resoures that aprogram aesses. For example, a program that inserts an element into a linkedlist need know only about the ells in that list; there is no need (intuitively) tokeep trak of all other ells in memory when reasoning about the program.The entral idea of the approah studied in this paper is of a \spatial on-juntion" P � Q, that asserts that P and Q hold for separate parts of a datastruture. The onjuntion provides a way to ompose assertions that refer todi�erent areas of memory, while retaining disjointness information for eah ofthe onjunts. The loality that this provides an be seen both on the level ofatomi heap assignments and the level of ompound operations or proedures.When an alteration to a single heap ell a�ets P in P �Q, then we know that itwill not a�et Q; this gives us a way to short-iruit the need to hek for poten-tial aliases in Q. On a larger sale, a spei�ation fPgCfQg of a heap surgeryan be extended using a rule that lets us infer fP �RgCfQ�Rg, whih expressesthat additional heap ells remain unaltered. This enables the initial spei�ationfPgCfQg to onentrate on only the ells in the program's footprint.The basi idea of the spatial onjuntion is impliit in early work of Burstall[3℄. It was expliitly desribed by Reynolds in letures in the fall of 1999; then anintuitionisti logi based on this idea was disovered independently by Reynolds[20℄ and by Ishtiaq and O'Hearn [7℄ (who also introdued a spatial impliationP��Q, based on the logi BI of bunhed impliations [11, 17℄). In addition,Ishtiaq and O'Hearn devised a lassial version of the logi that is more expressivethan the intuitionisti version. In partiular, it an express storage dealloation.Subsequently, Reynolds extended the lassial version by adding pointerarithmeti. This extension results in a model that is simpler and more gen-eral than our previous models, and opens up the possibility of verifying a widerrange of low-level programs, inluding many whose properties are diÆult toapture using type systems. Meanwhile, O'Hearn eshed out the theme of loalreasoning skethed in [7℄, and he and Yang developed a streamlined presentationof the logi based on what we all the \small axioms".In this joint paper we present the pointer arithmeti model and assertionlanguage, with the streamlined Hoare logi. We illustrate the formalism usingprograms that work with a spae-saving representation of doubly-linked lists,and a program that opies a tree.Two points are worth stressing before ontinuing. First, by loal we do notmerely mean ompositional reasoning: It is perfetly possible to be ompositionaland global (in the state) at the same time, as was the ase in early denotationalmodels of imperative languages. Seond, some aspets of this work bear a strongsimilarity to semanti models of loal state [19, 15, 16, 13, 12℄. In partiular,the onjuntion � is related to interpretations of syntati ontrol of interferene[18, 10, 12℄, and the Frame Rule desribed in Setion 3 was inspired by the idea ofthe expansion of a ommand from [19, 15℄. Nevertheless, loal reasoning aboutstate is not the same thing as reasoning about loal state: We are proposing
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here that spei�ations and reasoning themselves be kept on�ned, and this isan issue whether or not we onsider programming failities for hiding state.2 The Model and Assertion LanguageThe model has two omponents, the store and the heap. The store is a �nitepartial funtion mapping from variables to integers. The heap is indexed by asubset Loations of the integers, and is aessed using indiret addressing [E℄where E is an arithmeti expression.Ints �= f:::;�1; 0; 1; :::g Variables �= fx; y; :::gAtoms; Loations� Ints Loations\ Atoms = fg; nil 2 AtomsStores �= Variables*fin Ints Heaps �= Loations*fin IntsStates �= Stores� HeapsIn order for alloation to always sueed, we plae a requirement on the setLoations: For any positive integer n, there are in�nitely many sequenes oflength n of onseutive integers in Loations. This requirement is satis�ed if wetake Loations to be the non-negative integers. (In several example formulae, wewill impliitly rely on this hoie.) Then we ould take Atoms to be the negativeintegers, and nil to be �1.Integer and boolean expressions are determined by valuations[[E℄℄s 2 Ints [[B℄℄s 2 ftrue; falsegwhere the domain of s 2 Stores inludes the free variables of E or B. Thegrammars for expressions are as follows.E;F;G ::= x; y; ::: j 0 j 1 j E + F j E � F j E � FB ::= false j B ) B j E = F j E < F j isatom?(E) j islo?(E)The expressions isatom?(E) and islo?(E) test whether E is an atom or loa-tion.The assertions inlude all of the boolean expressions, the points-to relationE 7! F , all of lassial logi, and the spatial onnetives emp, � and �� .P;Q;R ::= B j E 7! F Atomi Formulaej false j P ) Q j 8x:P Classial Logij emp j P �Q j P��Q Spatial ConnetivesVarious other onnetives are de�ned as usual: :P = P ) false; true =:(false); P _Q = (:P )) Q; P ^Q = :(:P _ :Q); 9x: P = :8x::P .We use the following notations in the semantis of assertions.1. dom(h) denotes the domain of de�nition of a heap h 2 Heaps, and dom(s) isthe domain of s 2 Stores;
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2. h#h0 indiates that the domains of h and h0 are disjoint;3. h � h0 denotes the union of disjoint heaps (i.e., the union of funtions withdisjoint domains);4. (f j i 7! j) is the partial funtion like f exept that i goes to j. This notationis used both when i is and is not in the domain of f .We de�ne a satisfation judgement s; h j= P whih says that an assertionholds for a given store and heap. (This assumes that Free(P ) � dom(s), whereFree(P ) is the set of variables ourring freely in P .)s; h j= B i� [[B℄℄s = trues; h j= E 7! F i� f[[E℄℄sg = dom(h) and h([[E℄℄s) = [[F ℄℄ss; h j= false nevers; h j= P ) Q i� if s; h j= P then s; h j= Qs; h j= 8x:P i� 8v 2 Ints: [s j x 7! v℄; h j= Ps; h j= emp i� h = [ ℄ is the empty heaps; h j= P �Q i� 9h0; h1: h0#h1; h0 � h1 = h; s; h0 j= P and s; h1 j= Qs; h j= P��Q i� 8h0: if h0#h and s; h0 j= P then s; h � h0 j= QNotie that the semantis of E 7! F is \exat", where it is required that E isthe only ative address in the urrent heap. Using � we an build up desriptionsof larger heaps. For example, (10 7! 3) � (11 7! 10) desribes two adjaent ellswhose ontents are 3 and 10.On the other hand, E = F is ompletely heap independent (like all booleanand integer expressions). As a onsequene, a onjuntion (E = F ) � P is truejust when E = F holds in the urrent store and when P holds for the same storeand some heap ontained in the urrent one.It will be onvenient to have syntati sugar for desribing adjaent ells,and for an exat form of equality. We also have sugar for when E is an ativeaddress.E 7! F0; :::; Fn �= (E 7! F0) � � � � � (E + n 7! Fn)E := F �= (E = F ) ^ empE 7! { �= 9y:E 7! y (y 62 Free(E))A harateristi property of := is the way it interats with �:(E := F ) � P , (E = F ) ^ P:As an example of adjaeny, onsider an \o�set list", where the next node ina linked list is obtained by adding an o�set to the position of the urrent node.Then the formula (x 7! a; o) � (x+ o 7! b;�o)
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desribes a two-element, irular, o�set list that ontains a and b in its head�elds and o�sets in its link �elds. For example, in a store where x = 17 ando = 25, the formula is true of a heapa b1718 424325 -25The semantis in this setion is a model of (the Boolean version of) the logiof bunhed impliations [11, 17℄. This means that the model validates all thelaws of lassial logi, ommutative monoid laws for emp and �, and the \parallelrule" for � and \adjuntion rules" for �� .P ) Q R) SP �R) Q � SP �R) SP ) R��S P ) R��S Q) RP �Q) SOther fats, true in the spei� model, inlude�(E 7! F ) � (E0 7! F 0) � true�) E 6= E0 emp , 8x::(x 7! { � true)See [21℄ for a fuller list.3 The Core SystemIn this setion we present the ore system, whih onsists of axioms for ommandsthat alter the state as well as a number of inferene rules. We will desribe themeanings for the various ommands informally, as eah axiom is disussed.There is one axiom for eah of four atomi ommands. We emphasize thatthe right-hand side of := is not an expression ourring in the forms x := [E℄and x := ons(E1; :::; Ek); [�℄ and ons do not appear within expressions. Onlyx := E is a traditional assignment, and it is the only atomi ommand that anbe desribed by Hoare's assignment axiom. In the axioms x;m; n are assumedto be distint variables.The Small AxiomsfE 7! {g [E℄ := F fE 7! FgfE 7! {g dispose(E) fempgfx := mgx := ons(E1; :::; Ek)fx 7! E1[m=x℄; :::; Ek[m=x℄ gfx := ngx := E fx := (E[n=x℄)gfE 7! n ^ x = mgx := [E℄ fx = n ^ E[m=x℄ 7! ng
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The Strutural RulesFrame Rule fPgCfQgfP �RgCfQ �Rg Modi�es(C) \ Free(R) = fgAuxiliary Variable EliminationfPgC fQg x 62 Free(C)f9x:PgC f9x:QgVariable SubstitutionfPgC fQg fx1; :::; xkg � Free(P;C;Q), andxi 2 Modi�es(C) impliesEi is a variable not free in any other Ej(fPgC fQg)[E1=x1; :::; Ek=xk℄Rule of ConsequeneP 0 ) P fPgC fQg Q) Q0fP 0gC fQ0gThe �rst small axiom just says that if E points to something beforehand (soit is ative), then it points to F afterwards, and it says this for a small portion ofthe state in whih E is the only ative ell. This orresponds to the operationalidea of [E℄ := F as a ommand that stores the value of F at address E inthe heap. The axiom also impliitly says that the ommand does not alter anyvariables; this is overed by our de�nition of its Modi�es set below.The dispose(E) instrution dealloates the ell at address E. In the post-ondition for the dispose axiom emp is a formula whih says that the heap isempty (no addresses are ative). So, the axiom states that if E is the sole ativeaddress and it is disposed, then in the resulting state there will be no ativeaddresses. Here, the exat points-to relation is neessary, in order to be able toonlude emp on termination.The x := ons(E1; :::; Ek) ommand alloates a ontiguous segment of k ells,initialized to the values of E1; :::; Ek, and plaes in x the address of the �rst ellfrom the segment. The preondition of the axiom uses the exat equality, whihimplies that the heap is empty. The axiom says that if we begin with the emptyheap and a store where x = m, we will obtain k ontiguous ells with appropriatevalues. The variable m in this axiom is used to reord the value of x before theommand is exeuted.We only get �xed-length alloation from x := ons(E1; :::; Ek). It is alsopossible to formulate an axiom for a ommand x := allo(E) that alloates asegment of length E; see [21℄.We have also inluded small axioms for the other two ommands, but they areless important. These ommands are not traditionally as problemati, beausethey do not involve heap alteration.
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The small axioms are so named beause eah mentions only the area of heapaessed by the orresponding ommand. For [E℄ := F and x := [E℄ this isone ell, in the axioms for dispose or ons preisely those ells alloated ordealloated are mentioned, and in x := E no heap ells are aessed.The notion of free variable referred to in the strutural rules is the standardone. Modi�es(C) is the set of variables that are assigned to within C. The Mod-i�es set of eah of x := ons(E1; :::; Ek), x := E and x := [E℄ is fxg, while fordispose(E) and [E℄ := F it is empty. Note that the Modi�es set only trakspotential alterations to the store, and says nothing about the heap ells thatmight be modi�ed.In this paper we treat the Rule of Consequene semantially. That is, whenthe premisses P 0 ) P and Q) Q0 are true in the model for arbitrary store/heappairs, we will use the rule without formally proving the premisses.The Frame Rule odi�es a notion of loal behaviour. The idea is that the pre-ondition in fPgCfQg spei�es an area of storage, as well as a logial property,that is suÆient for C to run and (if it terminates) establish postondition Q.If we start exeution with a state that has additional heap ells, beyond thosedesribed by P , then the values of the additional ells will remain unaltered. Weuse � to separate out these additional ells. The invariant assertion R is whatMCarthy and Hayes alled a \frame axiom" [9℄. It desribes ells that are notaessed, and hene not hanged, by C.As a warming-up example, using the Frame Rule we an prove that assigningto the �rst omponent of a binary ons ell does not a�et the seond omponent.fx 7! ag [x℄ := b fx 7! bgf(x 7! a) � (x + 1 7! )g [x℄ := b f(x 7! b) � (x+ 1 7! )g Framefx 7! a; g [x℄ := b fx 7! b; g Syntati SugarThe overlap of free variables between x + 1 7!  and [x℄ := b is allowed herebeause Modi�es([x℄ := b) = fg.4 Derived LawsThe small axioms are simple but not pratial. Rather, they represent a kindof thought experiment, an extreme take on the idea that a spei�ation anonentrate on just those ells that a program aesses.In this setion we show how the strutural rules an be used to obtain anumber of more onvenient derived laws (most of whih were taken as primitivein [20, 7℄). Although we will not expliitly state a ompleteness result, alongthe way we will observe that weakest preonditions or strongest postonditionsare derivable for eah of the individual ommands. This shows a sense in whihnothing is missing in the ore system, and justi�es the laim that eah smallaxiom gives enough information to understand how its ommand works.We begin with [E℄ := F . If we onsider an arbitrary invariant R then weobtain the following derived axiom using the Frame Rule with the small axiom
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as its premise. f(E 7! {) � Rg [E℄ := F f(E 7! F ) � RgThis axiom expresses a kind of loality: Assignment to [E℄ a�ets the heap ellat position E only, and so annot a�et the assertion R. In partiular, there isno need to generate alias heks within R. With several more steps of AuxiliaryVariable Elimination we an obtain an axiom that is essentially the one from[20℄: f9x1; � � � ; xn: (E 7! {) � Rg [E℄ := F f9x1; � � � ; xn: (E 7! F ) � Rgwhere x1; :::; xn 62 Free(E;F ).For alloation, suppose x 62 Free(E1; :::; Ek). Then a simpler version of thesmall axiom is fempgx := ons(E1; :::; Ek)fx 7! E1; :::; Ek gThis an be derived using rules for auxiliary variables and Consequene. If,further, R is an assertion where x 62 Free(R) thenfempgx := ons(E1; :::; Ek) fx 7! E1; :::; Ek gfemp �Rgx := ons(E1; :::; Ek) f(x 7! E1; :::; Ek) �Rg FramefRgx := ons(E1; :::; Ek) f(x 7! E1; :::; Ek) �Rg ConsequeneThe onlusion is the strongest postondition, and a variant involving auxiliaryvariables handles the ase when x 2 Free(R;E1; :::; Ek).As an example of the use of these laws, reall the assertion (x 7! a; o)�(x+o 7!b;�o) that desribes a irular o�set-list. Here is a proof outline for a sequeneof ommands that reates suh a struture.fempgx := ons(a; a)fx 7! a; agt := ons(b; b)f(x 7! a; a) � (t 7! b; b)g[x+ 1℄ := t� xf(x 7! a; t� x) � (t 7! b; b)g[t+ 1℄ := x� tf(x 7! a; t� x) � (t 7! b; x� t)gf9o: (x 7! a; o) � (x+ o 7! b;�o)gThe last step, whih is an instane of the Rule of Consequene, uses t � x asthe witness for o. Notie how the alterations in the last two ommands are doneloally. For example, beause of the plaement of � we know that x+1 must bedi�erent from t and t + 1, so the assignment [x + 1℄ := t � x annot a�et thet 7! b; b onjunt.
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If we wish to reason bakwards, then �� an be used to express weakestpreonditions. Given an arbitrary postondition Q, hoosing (E 7! F )��Q asthe invariant gives a valid preondition for [E℄ := FfE 7! {g [E℄ := F fE 7! Fgf(E 7! {) � ((E 7! F )��Q)g [E℄ := F f(E 7! F ) � ((E 7! F )��Q)g Framef(E 7! {) � ((E 7! F )��Q)g [E℄ := F fQg ConsequeneThe Consequene step uses an adjuntion rule for � and �� . The preonditionobtained is in fat the weakest: it expresses the \update as deletion followed byextension" idea explained in [7℄. The weakest preondition for alloation an alsobe expressed with �� .The weakest preondition for dispose an be omputed diretly, beause theModi�es set of dispose(E) is empty.fE 7! {g dispose(E) fempgf(E 7! {) �Rg dispose(E) femp �Rg Framef(E 7! {) �Rg dispose(E) fRg ConsequeneThe onlusion is (a unary version of) the axiom for dispose from [7℄.The weakest preondition axiom for x := E is the usual one of Hoare. Forx := [E℄ is it similar, using 9 to form a \let binder" (where n 62 Free(E;P; x).fP [E=x℄gx := EfPgf9n: (true � E 7! n) ^ P [n=x℄gx := [E℄fPgThe formal derivations of these laws from the small axioms make heavy use ofVariable Substitution and Auxiliary Variable Elimination; the details are on-tained in Yang's thesis [24℄.Another useful derived law for x := [E℄ is for the ase when x 62 Free(E;R),y 62 Free(E), and when the preondition is of the form (E 7! y) �R. Then,f(E 7! y) �Rgx := [E℄ f(E 7! x) �R[x=y℄g:5 Beyond the CoreIn the next few setions we give some examples of the formalism at work. Inthese examples we use sequening, if-then-else, and a onstrut newvar fordelaring a loal variable. We an extend the ore system with their usual Hoarelogi rules.fP ^ BgC fQg fP ^ :BgC 0 fQgfPg ifB thenC elseC 0fQg fPgC1 fQg fQgC2 fRgfPgC1;C2 fRgfPgC fQgfPg newvarx:C fQg x 62 Free(P;Q)We will also use simple �rst-order proedures. The proedure de�nitions weneed will have the form
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proedure p(x1; :::; xn; y)Bwhere x1; :::; xn are variables not hanged in the body B and y is a variablethat is assigned to. Proedure headers will always ontain all of the variablesourring freely in a proedure body. Aordingly, we de�neModi�es(p(x1; :::; xn; y)) = fygFree(p(x1; :::; xn; y)) = fx1; :::; xn; yg.We will need these lauses when applying the strutural rules. In the examplesthe alling mehanism an be taken to be either by-name for all the parameters,or by-value on the xi's and by-referene on y.Proedures are used in Setion 7 mainly to help struture the presentation,but in Setion 6 we also use reursive alls. There we appeal to the standardpartial orretness rule whih allows us to use the spei�ation we are trying toprove as an assumption when reasoning about the body [5℄.Our treatment in what follows will not be ompletely formal. We will ontinueto use the Rule of Consequene in a semanti way, and we will make indutivede�nitions without formally de�ning their semantis. Also, as is ommon, we willpresent program spei�ations annotated with intermediate assertions, ratherthan give step-by-step proofs.6 Tree CopyIn this setion we onsider a proedure for opying a tree. The purpose of theexample is to show the Frame Rule in ation.For our purposes a tree will either be an atom a or a pair (�1; �2) of trees.Here is an indutive de�nition of a prediate tree � i whih says when a numberi represents a tree � .treea i �() i = a ^ isatom?(a) ^ emptree (�1; �2) i �() 9x; y: (i 7! x; y) � (tree �1 x � tree �2 y)These two ases are exlusive. For the �rst to be true i must be an atom, wherein the seond it must be a loation.The tree � i prediate is \exat", in the sense that when it is true the urrentheap must have all and only those heap ells used to represent the tree. If � hasn pairs in it and s; h j= tree � i then the domain of h has size 2n.The spei�ation of the CopyTree proedure is�tree � p	 CopyTree(p; q)�(tree � p) � (tree � q)	:and here is the ode.
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proedure CopyTree(p; q)newvar i; j; i0; j0:ftree � pgif isatom?(p) thenf� = p ^ isatom?(p) ^ empgf(tree � p) � (tree � p)gq := pf(tree � p) � (tree � q)gelsef9�1; �2; x; y: � := (�1; �2) � (p 7! x; y) � (tree �1 x) � (tree �2 y)gi := [p℄; j := [p+ 1℄;f9�1; �2: � := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j)gCopyTree(i; i0);f9�1; �2: � := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0)gCopyTree(j; j0);f9�1; �2: � := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0)�(tree �2 j0)gq := ons(i0; j0)f9�1; �2: � := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0)�(tree �2 j0) � (q 7! i0; j0)gf(tree � p) � (tree � q)gMost of the steps are straightforward, but the two reursive alls deservespeial omment. In proving the body of the proedure we get to use the spei-�ation of CopyTree as an assumption. But at �rst sight the spei�ation doesnot appear to be strong enough, sine we need to be sure that CopyTree(i; i0)does not a�et the assertions p 7! i; j and tree �2 j. Similarly, we need thatCopyTree(j; j0) does not a�et tree �1 i0.These \does not a�et" properties are obtained from two instanes of theFrame Rule: ftree �1 ig CopyTree(i; i0) f(tree �1 i) � (tree �1 i0)gf� := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j)gCopyTree(i; i0)f� := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0)gand ftree �2 jg CopyTree(j; j0) f(tree �2 j) � (tree �2 j0)gf� := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0)gCopyTree(j; j0)f� := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0) � (tree �2 j0)g:Then, the required triples for the alls are obtained using Auxiliary VariableElimination to introdue 9�1; �2. (It would also have been possible to strip theexistential at the beginning of the proof of the else part, and then reintrodueit after �nishing instead of arrying it through the proof.)
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This setion illustrates two main points. First, if one does not have someway of representing or inferring frame axioms, then the proofs of even simpleprograms with proedure alls will not go through. In partiular, for reursiveprograms attention to framing is essential if one is to obtain strong enoughindution hypotheses. The CopyTree proedure ould not be veri�ed without theFrame Rule, unless we were to ompliate the initial spei�ation by inludingsome expliit representation of frame axioms.Seond, the spei�ation of CopyTree illustrates the idea of a spei�ationthat onentrates only on those ells that a program aesses. And of oursethese two points are linked; we need some way to infer frame axioms, or elsesuh a spei�ation would be too weak.7 Di�erene-linked ListsThe purpose of this setion is to illustrate the treatment of address arithmeti,and also disposal. We do this by onsidering a spae-saving representation ofdoubly-linked lists.Conventionally, a node in a doubly-linked list ontains a data �eld, togetherwith a �eld storing a pointer n to the next node and another storing a pointer pto the previous node. In the di�erene representation we store n� p in a single�eld rather than have separate �elds for n and p. In a onventional doubly-linkedlist it is possible to move either forwards or bakwards from a given node. Ina di�erene-linked list given the urrent node  we an lookup the di�erened = n�p between next and previous pointers. This di�erene does not, by itself,give us enough information to determine either n or p. However, if we also knowp we an alulate n as d + p, and similarly given n we an obtain p as n � d.So, using the di�erene representation, it is possible to traverse the list in eitherdiretion as long as we keep trak of the previous or next node as we go along.A similar, more time-eÆient, representation is sometimes given using thexor of pointers rather than their di�erene.We now give a de�nition of a prediate dl. If we were working with onven-tional doubly-linked lists then dla1 � � � an (i; i0; j; j0) would orrespond to
ana1 . . . . . .

i j 0
i0 j
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Typially, a doubly-linked list with front i and bak j0 would satisfy the prediatedl� (i; nil; nil; j0). The reason for the internal nodes i0 and j is to allow us toonsider partial lists, not terminated by nil.A de�nition of dl for onventional doubly-linked lists was given in [20℄. Themain alteration we must make is to use anpan-p instead ofto represent a node.Here is the de�nition.dl � (i; i0; j; j0) �() emp ^ i = j ^ i0 = j0dla� (i; i0; k; k0) �() 9j:(i 7! a; j � i0) � dl� (j; i; k; k0)We are using juxtaposition to represent the onsing of an element a onto thefront of a sequene �, and � to represent the empty sequene. As a small example,dlab (5; 1; 3; 8) is true of a b856 98-1 3-5It is instrutive to look at how this de�nition works for a sequene onsistingof a single element, a. For dla (i; i0; j; j0) to hold we must have 9x:(i 7! a; x �i0) � dl � (x; i; j; j0); we an pik x to be j, as suggested by the i = j part of thease for �. We are still left, however, with the requirement that i = j0, and thisin fat leads us to the haraterization i 7! a; j � i0 ^ i = j0 of dla (i; i0; j; j0).Thus, a single-lement list exempli�es how the � ase is arranged to be ompat-ible with the operation of onsing an element onto the front of a sequene. Theroles of the i = j and i0 = j0 requirements are essentially reversed for the dualoperation, of adding a single element onto the end of a sequene. This operationis haraterized as follows.dl�a (i; i0; k; k0), 9j0: dl� (i; i0; k0; j0) � k0 7! a; k � j0In the examples to ome we will also use the following properties.j0 6= nil ^ dl� (i; nil; j; j0)) 9�; a; k: � := �a �dl� (i; i0; j0; k) � j0 7! a; j � kdl� (i; i0; j; nil)) emp ^ � = � ^ i0 = nil ^ i = jdl� (nil; i0; j; j0)) emp ^ � = � ^ j = nil ^ i0 = j0
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Doubly-linked lists are often used to implement queues, beause they makeit easy to work at either end. We axiomatize an enqueue operation.Rather than give the ode all at one, it will be helpful to use a proedureto enapsulate the operation of setting a right pointer . Suppose we are in theposition of having a pointer j0, whose di�erene �eld represents pointing on theright to, say, j. We want to swing the right pointer so that it points to k instead.The spei�ation of the proedure isfdl� (i; nil; j; j0)g setrptr(j; j0; k; i)fdl� (i; nil; k; j0)g:Notie that this spei�ation handles the � = � ase, when j0 does not point toan ative ell.Postponing the de�nition and proof of setrptr for a moment, we an use itto verify a ode fragment for putting an value a on the end of a queue.fdl� (front; nil; nil; bak)gt := bak;fdl� (front; nil; nil; t)gbak := ons(a; nil� t);fdl� (front; nil; nil; t) � bak 7! a; nil� tgsetrptr(nil; t; bak; front)fdl� (front; nil; bak; t) � bak 7! a; nil� tgfdl�a (front; nil; nil; bak)gThe ode reates a new node ontaining the value a and the di�erene nil� t.Then, the proedure all setrptr(nil; t; bak; front) swings the right pointerassoiated with t so that the next node beomes bak. In the assertions, the e�etof bak := ons(a; nil�t) is axiomatized by taking �(bak 7! a; nil�t) onto itspreondition. This sets us up for the all to setrptr; beause of the plaementof � we know that the all will not a�et (bak 7! a; nil � t). More preisely,the triple for the all is obtained using Variable Substitution to instantiate thespei�ation, and the Frame Rule with (bak 7! a; nil� t) as the invariant.Finally, here is an implementation of setrptr(j; j0; k; i).fdl� (i; nil; j; j0)gif j0 = nil thenf� = � ^ emp ^ j0 = nilgi := kf� = � ^ emp ^ j0 = nil ^ i = kgelsef9�0; b; p: (� := �0b) � dl�0 (i; nil; j0; p) � (j0 7! b; j � p)gnewvard: d := [j0 + 1℄; [j0 + 1℄ := k + d� jf9�0; b; p: (� := �0b) � dl�0 (i; nil; j0; p) � (j0 7! b; k � p)gfdl� (i; nil; k; j0)gThe triky part in the veri�ation is the else branh of the onditional, wherethe ode has to update the di�erene �eld of j0 appropriately so that k beomesthe next node of j0. It updates the �eld by adding k and subtrating j; sine
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the �eld initially stores j � p, where p is the address of the previous node, suhalulation results in the value k � p.The use of the temporary variable d in the else branh is a minor irritation.We ould more simply write [j0+1℄ := k+[j0+1℄� j if we were to allow nestingof [�℄. An unresolved question is whether, in our formalism, suh nesting ouldbe dealt with in a way simpler than ompiling it out using temporary variables.Now we sketh a similar development for ode that implements a dequeueoperation. In this ase, we use a proedure setlptr(i; i0; k; j0), whih is similarto setrptr exept that it swings a pointer to the left instead of to the right.fdl� (i; i0; nil; j0)g setlptr(i; i0; k; j0) fdl� (i; k; nil; j0)gThe dequeue operation removes the �rst element of a queue and plaes itsdata in x.fdla� (front; nil; nil; bak)gf9n0: front 7! a; n0 � nil � dl� (n0; front; nil; bak)gx := [front℄; d := [front+ 1℄; n := d+ nil;fx := a � front 7! a; n� nil � dl� (n; front; nil; bak)gdispose(front); dispose(front+ 1);fx := a � dl� (n; front; nil; bak)gsetlptr(n; front; nil; bak)fx := a � dl� (n; nil; nil; bak)gThis ode stores the data of the �rst node in the variable x and obtains thenext pointer n using arithmeti with the di�erene �eld. The plaement of �sets us up for disposing front and front + 1: The preondition to these twoommands is equivalent to an assertion of the form (front 7! a) � (front+1 7!n0 � nil) � R, whih is ompatible with what is given by two appliations ofthe weakest preondition rule for dispose. After the disposals have been done,the proedure all setlptr(n; front; nil; bak) resets the di�erene �eld of thenode n so that its previous node beomes nil.The ode for setlptr(i; i0; k; j0) is as follows.fdl� (i; i0; nil; j0)gif i = nil thenf� = � ^ emp ^ i = nilgj0 := kf� = � ^ emp ^ i = nil ^ k = j0gelsef9�0; a; n: (� := a�0) � dl�0 (n; i; nil; j0) � (i 7! a; n� i0)g[i+ 1℄ := [i+ 1℄ + i0 � kf9�0; a; n: (� := a�0) � dl�0 (n; i; nil; j0) � (i 7! a; n� k)gfdl� (i; k; nil; j0)g
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8 Memory Faults and Tight Spei�ationsIn this paper we will not inlude a semantis of ommands or preise interpreta-tion of triples, but in this setion we give an informal disussion of the semantiproperties of triples that the axiom system relies on.Usually, the spei�ation form fPgCfQg is interpreted \loosely", in the sensethat C might ause state hanges not desribed by the pre and postondition.This leads to the need for expliit frame axioms. An old idea is to instead on-sider a \tight" interpretation of fPgCfQg, whih should guarantee that C onlyalters those resoures mentioned in P and Q; unfortunately, a preise de�ni-tion of the meaning of tight spei�ations has proven elusive [1℄. However, thedesription of loal reasoning from the Introdution, where a spei�ation andproof onentrate on a irumsribed area of memory, requires something liketightness. The need for a tight interpretation is also lear from the small axioms,or the spei�ations of setlptr, setrptr and CopyTree.To begin, the model here alls for a notion of memory fault. This an bepitured by imagining that there is an \aess bit" assoiated with eah loation,whih is on i� the loation is in the domain of the heap. Any attempt to reador write a loation whose aess bit is o� auses a memory fault, so if E is notan ative address then [E℄ := E0 or x := [E℄ results in a fault. A simple wayto interpret dispose(E) is so that it faults if E is not an ative address, andotherwise turns the aess bit o�.Then, a spei�ation fPgCfQg holds i�, whenever C is run in a state satisfy-ing P : (i) it does not generate a fault; and (ii) if it terminates then the �nal statesatis�esQ. (This is a partial orretness interpretation; the total orretness vari-ant alters (ii) by requiring that there are no in�nite redutions.) For example,aording to the fault-avoiding interpretation, f17 7! {g [17℄ := 4 f17 7! 4g holdsbut ftrueg [17℄ := 4 f17 7! 4g does not. The latter triple fails beause the emptyheap satis�es true but [17℄ := 4 generates a memory fault when exeuted in theempty heap.In the logi, faults are preluded by the assumptions E 7! { and E 7! n inthe preonditions of the small axioms for [E℄ := E0, x := [E℄ and dispose(E).The main point of this setion is that this fault-avoiding interpretation offPgCfQg gives us a preise formulation of the intuitive notion of tightness. (Weemphasize that this requires faults, or a notion of enabled ation, and we do notlaim that it onstitutes a general analysis of the notion of tight spei�ation.)The avoidane of memory faults in spei�ations ensures that a well-spei�ed program an only dereferene (or dispose) those heap ells guar-anteed to exist by the preondition, or those whih are alloated duringexeution.Conretely, if one exeutes a program proved to satisfy fPgCfQg, starting in astate satisfying P , then memory aess bits are unneessary. A onsequene isthat it is not neessary to expliitly desribe all the heap ells that don't hange,beause those not mentioned automatially stay the same.
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Fault avoidane in fPgCfQg ensures that if C is run in a state stritlylarger than one satisfying P , then any additional ells must stay unhanged;an attempt to write any of the additional ells would falsify the spei�ation,beause it would generate a fault when applied to a smaller heap satisfying P .For example, if f17 7! {gC f17 7! 4g holds then f(17 7! {)�(19 7! 3)gC f(17 7!4) � (19 7! 3)g should as well, as mandated by the Frame Rule, beause anyattempt to dereferene address 19 would falsify f17 7! {gC f17 7! 4g if we giveC a state where the aess bit for 19 is turned o�. (This last step is deliate,in that one ould entertain operations, suh as to test whether an aess bit ison, whih ontradit it; what is generally needed for it is a notion whih an bedeteted in the logi but not the programming language.)9 ConlusionWe began the paper by suggesting that the main hallenge faing veri�ationformalisms for pointer programs is to apture the informal loal reasoning usedby programmers, or in textbook-style arguments about data strutures. Part ofthe diÆulty is that pointers exaerbate the frame problem [9, 1℄. (It is onlypart of the diÆulty beause the frame problem does not, by itself, say anythingabout aliasing.) For imperative programs the problem is to �nd a way, preferablysuint and intuitive, to desribe or imply the frame axioms, whih say whatmemory ells are not altered by a program or proedure. Standard methods, suhas listing the variables that might be modi�ed, do not work easily for pointerprograms, beause there are often many ells not diretly named by variables ina program or program fragment. These ells might be aessed by a program byfollowing pointer hains in memory, or they might not be aessed even whenthey are reahable.The approah taken here is based on two ideas. The �rst, desribed in Setion8, to use a fault-avoiding interpretation of triples to ensure that additional ells,ative but not desribed by a preondition, are not altered during exeution.The seond is to use the � onnetive to infer invariant properties implied bythese tight spei�ations.The frame problem for programs is perhaps more approahable than the gen-eral frame problem. Programs ome with a lear operational semantis, and onean appeal to onrete notions suh as a program's footprint. But the methodshere also appear to be more generally appliable. It would be interesting to givea preise omparison with ideas from the AI literature [22℄, as well as with vari-ations on Modi�es lauses [1, 8℄. We hope to report further on these matters {in partiular on the ideas outlined in Setion 8 { in the future. (Several relevantdevelopments an be found in Yang's thesis [24℄.)There are several immediate diretions for further work. First, the interationbetween loal and global reasoning is in general diÆult, and we do not mean toimply that things always go as smoothly as in the example programs we hose.They �t our formalism niely beause their data strutures break naturally intodisjoint parts, and data strutures that use more sharing are more diÆult to
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