
www.manaraa.com

Lo
al Reasoning about Programs that AlterData Stru
turesPeter O'Hearn1, John Reynolds2, and Hongseok Yang31 Queen Mary, University of London2 Carnegie Mellon University3 University of Birmingham and University of Illinois at Urbana-ChampaignAbstra
t. We des
ribe an extension of Hoare's logi
 for reasoning aboutprograms that alter data stru
tures. We
onsider a low-level storagemodel based on a heap with asso
iated lookup, update, allo
ation anddeallo
ation operations, and unrestri
ted address arithmeti
. The asser-tion language is based on a possible worlds model of the logi
 of bun
hedimpli
ations, and in
ludes spatial
onjun
tion and impli
ation
onne
-tives alongside those of
lassi
al logi
. Heap operations are axiomatizedusing what we
all the \small axioms", ea
h of whi
h mentions only those
ells a

essed by a parti
ular
ommand. Through these and a number ofexamples we show that the formalism supports lo
al reasoning: A spe
i-�
ation and proof
an
on
entrate on only those
ells in memory that aprogram a

esses.This paper builds on earlier work by Burstall, Reynolds, Ishtiaq andO'Hearn on reasoning about data stru
tures.1 Introdu
tionPointers have been a persistent trouble area in program proving. The main diÆ-
ulty is not one of �nding an in-prin
iple adequate axiomatization of pointer op-erations; rather there is a mismat
h between simple intuitions about the way thatpointer operations work and the
omplexity of their axiomati
 treatments. Forexample, pointer assignment is operationally simple, but when there is aliasing,arising from several pointers to a given
ell, then an alteration to that
ell maya�e
t the values of many synta
ti
ally unrelated expressions. (See [20, 2, 4, 6℄for dis
ussion and referen
es to the literature on reasoning about pointers.)We suggest that the sour
e of this mismat
h is the global view of statetaken in most formalisms for reasoning about pointers. In
ontrast, programmersreason informally in a lo
al way. Data stru
ture algorithms typi
ally work byapplying lo
al surgeries that rearrange small parts of a data stru
ture, su
h asrotating a small part of a tree or inserting a node into a list. Informal reasoningusually
on
entrates on the e�e
ts of these surgeries, without pi
turing the entirememory of a system. We summarize this lo
al reasoning viewpoint as follows.To understand how a program works, it should be possible for reasoningand spe
i�
ation to be
on�ned to the
ells that the program a
tually a
-
esses. The value of any other
ell will automati
ally remain un
hanged.

www.manaraa.com

Lo
al reasoning is intimately tied to the
omplexity of spe
i�
ations. Often, aprogram works with a
ir
ums
ribed
olle
tion of resour
es, and it stands toreason that a spe
i�
ation should
on
entrate on just those resour
es that aprogram a

esses. For example, a program that inserts an element into a linkedlist need know only about the
ells in that list; there is no need (intuitively) tokeep tra
k of all other
ells in memory when reasoning about the program.The
entral idea of the approa
h studied in this paper is of a \spatial
on-jun
tion" P � Q, that asserts that P and Q hold for separate parts of a datastru
ture. The
onjun
tion provides a way to
ompose assertions that refer todi�erent areas of memory, while retaining disjointness information for ea
h ofthe
onjun
ts. The lo
ality that this provides
an be seen both on the level ofatomi
 heap assignments and the level of
ompound operations or pro
edures.When an alteration to a single heap
ell a�e
ts P in P �Q, then we know that itwill not a�e
t Q; this gives us a way to short-
ir
uit the need to
he
k for poten-tial aliases in Q. On a larger s
ale, a spe
i�
ation fPgCfQg of a heap surgery
an be extended using a rule that lets us infer fP �RgCfQ�Rg, whi
h expressesthat additional heap
ells remain unaltered. This enables the initial spe
i�
ationfPgCfQg to
on
entrate on only the
ells in the program's footprint.The basi
 idea of the spatial
onjun
tion is impli
it in early work of Burstall[3℄. It was expli
itly des
ribed by Reynolds in le
tures in the fall of 1999; then anintuitionisti
 logi
 based on this idea was dis
overed independently by Reynolds[20℄ and by Ishtiaq and O'Hearn [7℄ (who also introdu
ed a spatial impli
ationP��Q, based on the logi
 BI of bun
hed impli
ations [11, 17℄). In addition,Ishtiaq and O'Hearn devised a
lassi
al version of the logi
 that is more expressivethan the intuitionisti
 version. In parti
ular, it
an express storage deallo
ation.Subsequently, Reynolds extended the
lassi
al version by adding pointerarithmeti
. This extension results in a model that is simpler and more gen-eral than our previous models, and opens up the possibility of verifying a widerrange of low-level programs, in
luding many whose properties are diÆ
ult to
apture using type systems. Meanwhile, O'Hearn
eshed out the theme of lo
alreasoning sket
hed in [7℄, and he and Yang developed a streamlined presentationof the logi
 based on what we
all the \small axioms".In this joint paper we present the pointer arithmeti
 model and assertionlanguage, with the streamlined Hoare logi
. We illustrate the formalism usingprograms that work with a spa
e-saving representation of doubly-linked lists,and a program that
opies a tree.Two points are worth stressing before
ontinuing. First, by lo
al we do notmerely mean
ompositional reasoning: It is perfe
tly possible to be
ompositionaland global (in the state) at the same time, as was the
ase in early denotationalmodels of imperative languages. Se
ond, some aspe
ts of this work bear a strongsimilarity to semanti
 models of lo
al state [19, 15, 16, 13, 12℄. In parti
ular,the
onjun
tion � is related to interpretations of synta
ti

ontrol of interferen
e[18, 10, 12℄, and the Frame Rule des
ribed in Se
tion 3 was inspired by the idea ofthe expansion of a
ommand from [19, 15℄. Nevertheless, lo
al reasoning aboutstate is not the same thing as reasoning about lo
al state: We are proposing

www.manaraa.com

here that spe
i�
ations and reasoning themselves be kept
on�ned, and this isan issue whether or not we
onsider programming fa
ilities for hiding state.2 The Model and Assertion LanguageThe model has two
omponents, the store and the heap. The store is a �nitepartial fun
tion mapping from variables to integers. The heap is indexed by asubset Lo
ations of the integers, and is a

essed using indire
t addressing [E℄where E is an arithmeti
 expression.Ints �= f:::;�1; 0; 1; :::g Variables �= fx; y; :::gAtoms; Lo
ations� Ints Lo
ations\ Atoms = fg; nil 2 AtomsStores �= Variables*fin Ints Heaps �= Lo
ations*fin IntsStates �= Stores� HeapsIn order for allo
ation to always su

eed, we pla
e a requirement on the setLo
ations: For any positive integer n, there are in�nitely many sequen
es oflength n of
onse
utive integers in Lo
ations. This requirement is satis�ed if wetake Lo
ations to be the non-negative integers. (In several example formulae, wewill impli
itly rely on this
hoi
e.) Then we
ould take Atoms to be the negativeintegers, and nil to be �1.Integer and boolean expressions are determined by valuations[[E℄℄s 2 Ints [[B℄℄s 2 ftrue; falsegwhere the domain of s 2 Stores in
ludes the free variables of E or B. Thegrammars for expressions are as follows.E;F;G ::= x; y; ::: j 0 j 1 j E + F j E � F j E � FB ::= false j B) B j E = F j E < F j isatom?(E) j islo
?(E)The expressions isatom?(E) and islo
?(E) test whether E is an atom or lo
a-tion.The assertions in
lude all of the boolean expressions, the points-to relationE 7! F , all of
lassi
al logi
, and the spatial
onne
tives emp, � and �� .P;Q;R ::= B j E 7! F Atomi
 Formulaej false j P) Q j 8x:P Classi
al Logi
j emp j P �Q j P��Q Spatial Conne
tivesVarious other
onne
tives are de�ned as usual: :P = P) false; true =:(false); P _Q = (:P)) Q; P ^Q = :(:P _ :Q); 9x: P = :8x::P .We use the following notations in the semanti
s of assertions.1. dom(h) denotes the domain of de�nition of a heap h 2 Heaps, and dom(s) isthe domain of s 2 Stores;

www.manaraa.com

2. h#h0 indi
ates that the domains of h and h0 are disjoint;3. h � h0 denotes the union of disjoint heaps (i.e., the union of fun
tions withdisjoint domains);4. (f j i 7! j) is the partial fun
tion like f ex
ept that i goes to j. This notationis used both when i is and is not in the domain of f .We de�ne a satisfa
tion judgement s; h j= P whi
h says that an assertionholds for a given store and heap. (This assumes that Free(P) � dom(s), whereFree(P) is the set of variables o

urring freely in P .)s; h j= B i� [[B℄℄s = trues; h j= E 7! F i� f[[E℄℄sg = dom(h) and h([[E℄℄s) = [[F ℄℄ss; h j= false nevers; h j= P) Q i� if s; h j= P then s; h j= Qs; h j= 8x:P i� 8v 2 Ints: [s j x 7! v℄; h j= Ps; h j= emp i� h = [℄ is the empty heaps; h j= P �Q i� 9h0; h1: h0#h1; h0 � h1 = h; s; h0 j= P and s; h1 j= Qs; h j= P��Q i� 8h0: if h0#h and s; h0 j= P then s; h � h0 j= QNoti
e that the semanti
s of E 7! F is \exa
t", where it is required that E isthe only a
tive address in the
urrent heap. Using � we
an build up des
riptionsof larger heaps. For example, (10 7! 3) � (11 7! 10) des
ribes two adja
ent
ellswhose
ontents are 3 and 10.On the other hand, E = F is
ompletely heap independent (like all booleanand integer expressions). As a
onsequen
e, a
onjun
tion (E = F) � P is truejust when E = F holds in the
urrent store and when P holds for the same storeand some heap
ontained in the
urrent one.It will be
onvenient to have synta
ti
 sugar for des
ribing adja
ent
ells,and for an exa
t form of equality. We also have sugar for when E is an a
tiveaddress.E 7! F0; :::; Fn �= (E 7! F0) � � � � � (E + n 7! Fn)E := F �= (E = F) ^ empE 7! { �= 9y:E 7! y (y 62 Free(E))A
hara
teristi
 property of := is the way it intera
ts with �:(E := F) � P , (E = F) ^ P:As an example of adja
en
y,
onsider an \o�set list", where the next node ina linked list is obtained by adding an o�set to the position of the
urrent node.Then the formula (x 7! a; o) � (x+ o 7! b;�o)

www.manaraa.com

des
ribes a two-element,
ir
ular, o�set list that
ontains a and b in its head�elds and o�sets in its link �elds. For example, in a store where x = 17 ando = 25, the formula is true of a heapa b1718 424325 -25The semanti
s in this se
tion is a model of (the Boolean version of) the logi
of bun
hed impli
ations [11, 17℄. This means that the model validates all thelaws of
lassi
al logi
,
ommutative monoid laws for emp and �, and the \parallelrule" for � and \adjun
tion rules" for �� .P) Q R) SP �R) Q � SP �R) SP) R��S P) R��S Q) RP �Q) SOther fa
ts, true in the spe
i�
 model, in
lude�(E 7! F) � (E0 7! F 0) � true�) E 6= E0 emp , 8x::(x 7! { � true)See [21℄ for a fuller list.3 The Core SystemIn this se
tion we present the
ore system, whi
h
onsists of axioms for
ommandsthat alter the state as well as a number of inferen
e rules. We will des
ribe themeanings for the various
ommands informally, as ea
h axiom is dis
ussed.There is one axiom for ea
h of four atomi

ommands. We emphasize thatthe right-hand side of := is not an expression o

urring in the forms x := [E℄and x :=
ons(E1; :::; Ek); [�℄ and
ons do not appear within expressions. Onlyx := E is a traditional assignment, and it is the only atomi

ommand that
anbe des
ribed by Hoare's assignment axiom. In the axioms x;m; n are assumedto be distin
t variables.The Small AxiomsfE 7! {g [E℄ := F fE 7! FgfE 7! {g dispose(E) fempgfx := mgx :=
ons(E1; :::; Ek)fx 7! E1[m=x℄; :::; Ek[m=x℄ gfx := ngx := E fx := (E[n=x℄)gfE 7! n ^ x = mgx := [E℄ fx = n ^ E[m=x℄ 7! ng

www.manaraa.com

The Stru
tural RulesFrame Rule fPgCfQgfP �RgCfQ �Rg Modi�es(C) \ Free(R) = fgAuxiliary Variable EliminationfPgC fQg x 62 Free(C)f9x:PgC f9x:QgVariable SubstitutionfPgC fQg fx1; :::; xkg � Free(P;C;Q), andxi 2 Modi�es(C) impliesEi is a variable not free in any other Ej(fPgC fQg)[E1=x1; :::; Ek=xk℄Rule of Consequen
eP 0) P fPgC fQg Q) Q0fP 0gC fQ0gThe �rst small axiom just says that if E points to something beforehand (soit is a
tive), then it points to F afterwards, and it says this for a small portion ofthe state in whi
h E is the only a
tive
ell. This
orresponds to the operationalidea of [E℄ := F as a
ommand that stores the value of F at address E inthe heap. The axiom also impli
itly says that the
ommand does not alter anyvariables; this is
overed by our de�nition of its Modi�es set below.The dispose(E) instru
tion deallo
ates the
ell at address E. In the post-
ondition for the dispose axiom emp is a formula whi
h says that the heap isempty (no addresses are a
tive). So, the axiom states that if E is the sole a
tiveaddress and it is disposed, then in the resulting state there will be no a
tiveaddresses. Here, the exa
t points-to relation is ne
essary, in order to be able to
on
lude emp on termination.The x :=
ons(E1; :::; Ek)
ommand allo
ates a
ontiguous segment of k
ells,initialized to the values of E1; :::; Ek, and pla
es in x the address of the �rst
ellfrom the segment. The pre
ondition of the axiom uses the exa
t equality, whi
himplies that the heap is empty. The axiom says that if we begin with the emptyheap and a store where x = m, we will obtain k
ontiguous
ells with appropriatevalues. The variable m in this axiom is used to re
ord the value of x before the
ommand is exe
uted.We only get �xed-length allo
ation from x :=
ons(E1; :::; Ek). It is alsopossible to formulate an axiom for a
ommand x := allo
(E) that allo
ates asegment of length E; see [21℄.We have also in
luded small axioms for the other two
ommands, but they areless important. These
ommands are not traditionally as problemati
, be
ausethey do not involve heap alteration.

www.manaraa.com

The small axioms are so named be
ause ea
h mentions only the area of heapa

essed by the
orresponding
ommand. For [E℄ := F and x := [E℄ this isone
ell, in the axioms for dispose or
ons pre
isely those
ells allo
ated ordeallo
ated are mentioned, and in x := E no heap
ells are a

essed.The notion of free variable referred to in the stru
tural rules is the standardone. Modi�es(C) is the set of variables that are assigned to within C. The Mod-i�es set of ea
h of x :=
ons(E1; :::; Ek), x := E and x := [E℄ is fxg, while fordispose(E) and [E℄ := F it is empty. Note that the Modi�es set only tra
kspotential alterations to the store, and says nothing about the heap
ells thatmight be modi�ed.In this paper we treat the Rule of Consequen
e semanti
ally. That is, whenthe premisses P 0) P and Q) Q0 are true in the model for arbitrary store/heappairs, we will use the rule without formally proving the premisses.The Frame Rule
odi�es a notion of lo
al behaviour. The idea is that the pre-
ondition in fPgCfQg spe
i�es an area of storage, as well as a logi
al property,that is suÆ
ient for C to run and (if it terminates) establish post
ondition Q.If we start exe
ution with a state that has additional heap
ells, beyond thosedes
ribed by P , then the values of the additional
ells will remain unaltered. Weuse � to separate out these additional
ells. The invariant assertion R is whatM
Carthy and Hayes
alled a \frame axiom" [9℄. It des
ribes
ells that are nota

essed, and hen
e not
hanged, by C.As a warming-up example, using the Frame Rule we
an prove that assigningto the �rst
omponent of a binary
ons
ell does not a�e
t the se
ond
omponent.fx 7! ag [x℄ := b fx 7! bgf(x 7! a) � (x + 1 7!
)g [x℄ := b f(x 7! b) � (x+ 1 7!
)g Framefx 7! a;
g [x℄ := b fx 7! b;
g Synta
ti
 SugarThe overlap of free variables between x + 1 7!
 and [x℄ := b is allowed herebe
ause Modi�es([x℄ := b) = fg.4 Derived LawsThe small axioms are simple but not pra
ti
al. Rather, they represent a kindof thought experiment, an extreme take on the idea that a spe
i�
ation
an
on
entrate on just those
ells that a program a

esses.In this se
tion we show how the stru
tural rules
an be used to obtain anumber of more
onvenient derived laws (most of whi
h were taken as primitivein [20, 7℄). Although we will not expli
itly state a
ompleteness result, alongthe way we will observe that weakest pre
onditions or strongest post
onditionsare derivable for ea
h of the individual
ommands. This shows a sense in whi
hnothing is missing in the
ore system, and justi�es the
laim that ea
h smallaxiom gives enough information to understand how its
ommand works.We begin with [E℄ := F . If we
onsider an arbitrary invariant R then weobtain the following derived axiom using the Frame Rule with the small axiom

www.manaraa.com

as its premise. f(E 7! {) � Rg [E℄ := F f(E 7! F) � RgThis axiom expresses a kind of lo
ality: Assignment to [E℄ a�e
ts the heap
ellat position E only, and so
annot a�e
t the assertion R. In parti
ular, there isno need to generate alias
he
ks within R. With several more steps of AuxiliaryVariable Elimination we
an obtain an axiom that is essentially the one from[20℄: f9x1; � � � ; xn: (E 7! {) � Rg [E℄ := F f9x1; � � � ; xn: (E 7! F) � Rgwhere x1; :::; xn 62 Free(E;F).For allo
ation, suppose x 62 Free(E1; :::; Ek). Then a simpler version of thesmall axiom is fempgx :=
ons(E1; :::; Ek)fx 7! E1; :::; Ek gThis
an be derived using rules for auxiliary variables and Consequen
e. If,further, R is an assertion where x 62 Free(R) thenfempgx :=
ons(E1; :::; Ek) fx 7! E1; :::; Ek gfemp �Rgx :=
ons(E1; :::; Ek) f(x 7! E1; :::; Ek) �Rg FramefRgx :=
ons(E1; :::; Ek) f(x 7! E1; :::; Ek) �Rg Consequen
eThe
on
lusion is the strongest post
ondition, and a variant involving auxiliaryvariables handles the
ase when x 2 Free(R;E1; :::; Ek).As an example of the use of these laws, re
all the assertion (x 7! a; o)�(x+o 7!b;�o) that des
ribes a
ir
ular o�set-list. Here is a proof outline for a sequen
eof
ommands that
reates su
h a stru
ture.fempgx :=
ons(a; a)fx 7! a; agt :=
ons(b; b)f(x 7! a; a) � (t 7! b; b)g[x+ 1℄ := t� xf(x 7! a; t� x) � (t 7! b; b)g[t+ 1℄ := x� tf(x 7! a; t� x) � (t 7! b; x� t)gf9o: (x 7! a; o) � (x+ o 7! b;�o)gThe last step, whi
h is an instan
e of the Rule of Consequen
e, uses t � x asthe witness for o. Noti
e how the alterations in the last two
ommands are donelo
ally. For example, be
ause of the pla
ement of � we know that x+1 must bedi�erent from t and t + 1, so the assignment [x + 1℄ := t � x
annot a�e
t thet 7! b; b
onjun
t.

www.manaraa.com

If we wish to reason ba
kwards, then ��
an be used to express weakestpre
onditions. Given an arbitrary post
ondition Q,
hoosing (E 7! F)��Q asthe invariant gives a valid pre
ondition for [E℄ := FfE 7! {g [E℄ := F fE 7! Fgf(E 7! {) � ((E 7! F)��Q)g [E℄ := F f(E 7! F) � ((E 7! F)��Q)g Framef(E 7! {) � ((E 7! F)��Q)g [E℄ := F fQg Consequen
eThe Consequen
e step uses an adjun
tion rule for � and �� . The pre
onditionobtained is in fa
t the weakest: it expresses the \update as deletion followed byextension" idea explained in [7℄. The weakest pre
ondition for allo
ation
an alsobe expressed with �� .The weakest pre
ondition for dispose
an be
omputed dire
tly, be
ause theModi�es set of dispose(E) is empty.fE 7! {g dispose(E) fempgf(E 7! {) �Rg dispose(E) femp �Rg Framef(E 7! {) �Rg dispose(E) fRg Consequen
eThe
on
lusion is (a unary version of) the axiom for dispose from [7℄.The weakest pre
ondition axiom for x := E is the usual one of Hoare. Forx := [E℄ is it similar, using 9 to form a \let binder" (where n 62 Free(E;P; x).fP [E=x℄gx := EfPgf9n: (true � E 7! n) ^ P [n=x℄gx := [E℄fPgThe formal derivations of these laws from the small axioms make heavy use ofVariable Substitution and Auxiliary Variable Elimination; the details are
on-tained in Yang's thesis [24℄.Another useful derived law for x := [E℄ is for the
ase when x 62 Free(E;R),y 62 Free(E), and when the pre
ondition is of the form (E 7! y) �R. Then,f(E 7! y) �Rgx := [E℄ f(E 7! x) �R[x=y℄g:5 Beyond the CoreIn the next few se
tions we give some examples of the formalism at work. Inthese examples we use sequen
ing, if-then-else, and a
onstru
t newvar forde
laring a lo
al variable. We
an extend the
ore system with their usual Hoarelogi
 rules.fP ^ BgC fQg fP ^ :BgC 0 fQgfPg ifB thenC elseC 0fQg fPgC1 fQg fQgC2 fRgfPgC1;C2 fRgfPgC fQgfPg newvarx:C fQg x 62 Free(P;Q)We will also use simple �rst-order pro
edures. The pro
edure de�nitions weneed will have the form

www.manaraa.com

pro
edure p(x1; :::; xn; y)Bwhere x1; :::; xn are variables not
hanged in the body B and y is a variablethat is assigned to. Pro
edure headers will always
ontain all of the variableso

urring freely in a pro
edure body. A

ordingly, we de�neModi�es(p(x1; :::; xn; y)) = fygFree(p(x1; :::; xn; y)) = fx1; :::; xn; yg.We will need these
lauses when applying the stru
tural rules. In the examplesthe
alling me
hanism
an be taken to be either by-name for all the parameters,or by-value on the xi's and by-referen
e on y.Pro
edures are used in Se
tion 7 mainly to help stru
ture the presentation,but in Se
tion 6 we also use re
ursive
alls. There we appeal to the standardpartial
orre
tness rule whi
h allows us to use the spe
i�
ation we are trying toprove as an assumption when reasoning about the body [5℄.Our treatment in what follows will not be
ompletely formal. We will
ontinueto use the Rule of Consequen
e in a semanti
 way, and we will make indu
tivede�nitions without formally de�ning their semanti
s. Also, as is
ommon, we willpresent program spe
i�
ations annotated with intermediate assertions, ratherthan give step-by-step proofs.6 Tree CopyIn this se
tion we
onsider a pro
edure for
opying a tree. The purpose of theexample is to show the Frame Rule in a
tion.For our purposes a tree will either be an atom a or a pair (�1; �2) of trees.Here is an indu
tive de�nition of a predi
ate tree � i whi
h says when a numberi represents a tree � .treea i �() i = a ^ isatom?(a) ^ emptree (�1; �2) i �() 9x; y: (i 7! x; y) � (tree �1 x � tree �2 y)These two
ases are ex
lusive. For the �rst to be true i must be an atom, wherein the se
ond it must be a lo
ation.The tree � i predi
ate is \exa
t", in the sense that when it is true the
urrentheap must have all and only those heap
ells used to represent the tree. If � hasn pairs in it and s; h j= tree � i then the domain of h has size 2n.The spe
i�
ation of the CopyTree pro
edure is�tree � p	 CopyTree(p; q)�(tree � p) � (tree � q)	:and here is the
ode.

www.manaraa.com

pro
edure CopyTree(p; q)newvar i; j; i0; j0:ftree � pgif isatom?(p) thenf� = p ^ isatom?(p) ^ empgf(tree � p) � (tree � p)gq := pf(tree � p) � (tree � q)gelsef9�1; �2; x; y: � := (�1; �2) � (p 7! x; y) � (tree �1 x) � (tree �2 y)gi := [p℄; j := [p+ 1℄;f9�1; �2: � := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j)gCopyTree(i; i0);f9�1; �2: � := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0)gCopyTree(j; j0);f9�1; �2: � := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0)�(tree �2 j0)gq :=
ons(i0; j0)f9�1; �2: � := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0)�(tree �2 j0) � (q 7! i0; j0)gf(tree � p) � (tree � q)gMost of the steps are straightforward, but the two re
ursive
alls deservespe
ial
omment. In proving the body of the pro
edure we get to use the spe
i-�
ation of CopyTree as an assumption. But at �rst sight the spe
i�
ation doesnot appear to be strong enough, sin
e we need to be sure that CopyTree(i; i0)does not a�e
t the assertions p 7! i; j and tree �2 j. Similarly, we need thatCopyTree(j; j0) does not a�e
t tree �1 i0.These \does not a�e
t" properties are obtained from two instan
es of theFrame Rule: ftree �1 ig CopyTree(i; i0) f(tree �1 i) � (tree �1 i0)gf� := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j)gCopyTree(i; i0)f� := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0)gand ftree �2 jg CopyTree(j; j0) f(tree �2 j) � (tree �2 j0)gf� := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0)gCopyTree(j; j0)f� := (�1; �2) � (p 7! i; j) � (tree �1 i) � (tree �2 j) � (tree �1 i0) � (tree �2 j0)g:Then, the required triples for the
alls are obtained using Auxiliary VariableElimination to introdu
e 9�1; �2. (It would also have been possible to strip theexistential at the beginning of the proof of the else part, and then reintrodu
eit after �nishing instead of
arrying it through the proof.)

www.manaraa.com

This se
tion illustrates two main points. First, if one does not have someway of representing or inferring frame axioms, then the proofs of even simpleprograms with pro
edure
alls will not go through. In parti
ular, for re
ursiveprograms attention to framing is essential if one is to obtain strong enoughindu
tion hypotheses. The CopyTree pro
edure
ould not be veri�ed without theFrame Rule, unless we were to
ompli
ate the initial spe
i�
ation by in
ludingsome expli
it representation of frame axioms.Se
ond, the spe
i�
ation of CopyTree illustrates the idea of a spe
i�
ationthat
on
entrates only on those
ells that a program a

esses. And of
oursethese two points are linked; we need some way to infer frame axioms, or elsesu
h a spe
i�
ation would be too weak.7 Di�eren
e-linked ListsThe purpose of this se
tion is to illustrate the treatment of address arithmeti
,and also disposal. We do this by
onsidering a spa
e-saving representation ofdoubly-linked lists.Conventionally, a node in a doubly-linked list
ontains a data �eld, togetherwith a �eld storing a pointer n to the next node and another storing a pointer pto the previous node. In the di�eren
e representation we store n� p in a single�eld rather than have separate �elds for n and p. In a
onventional doubly-linkedlist it is possible to move either forwards or ba
kwards from a given node. Ina di�eren
e-linked list given the
urrent node
 we
an lookup the di�eren
ed = n�p between next and previous pointers. This di�eren
e does not, by itself,give us enough information to determine either n or p. However, if we also knowp we
an
al
ulate n as d + p, and similarly given n we
an obtain p as n � d.So, using the di�eren
e representation, it is possible to traverse the list in eitherdire
tion as long as we keep tra
k of the previous or next node as we go along.A similar, more time-eÆ
ient, representation is sometimes given using thexor of pointers rather than their di�eren
e.We now give a de�nition of a predi
ate dl. If we were working with
onven-tional doubly-linked lists then dla1 � � � an (i; i0; j; j0) would
orrespond to
ana1

i j 0
i0 j

www.manaraa.com

Typi
ally, a doubly-linked list with front i and ba
k j0 would satisfy the predi
atedl� (i; nil; nil; j0). The reason for the internal nodes i0 and j is to allow us to
onsider partial lists, not terminated by nil.A de�nition of dl for
onventional doubly-linked lists was given in [20℄. Themain alteration we must make is to use anpan-p instead ofto represent a node.Here is the de�nition.dl � (i; i0; j; j0) �() emp ^ i = j ^ i0 = j0dla� (i; i0; k; k0) �() 9j:(i 7! a; j � i0) � dl� (j; i; k; k0)We are using juxtaposition to represent the
onsing of an element a onto thefront of a sequen
e �, and � to represent the empty sequen
e. As a small example,dlab (5; 1; 3; 8) is true of a b856 98-1 3-5It is instru
tive to look at how this de�nition works for a sequen
e
onsistingof a single element, a. For dla (i; i0; j; j0) to hold we must have 9x:(i 7! a; x �i0) � dl � (x; i; j; j0); we
an pi
k x to be j, as suggested by the i = j part of the
ase for �. We are still left, however, with the requirement that i = j0, and thisin fa
t leads us to the
hara
terization i 7! a; j � i0 ^ i = j0 of dla (i; i0; j; j0).Thus, a single-lement list exempli�es how the �
ase is arranged to be
ompat-ible with the operation of
onsing an element onto the front of a sequen
e. Theroles of the i = j and i0 = j0 requirements are essentially reversed for the dualoperation, of adding a single element onto the end of a sequen
e. This operationis
hara
terized as follows.dl�a (i; i0; k; k0), 9j0: dl� (i; i0; k0; j0) � k0 7! a; k � j0In the examples to
ome we will also use the following properties.j0 6= nil ^ dl� (i; nil; j; j0)) 9�; a; k: � := �a �dl� (i; i0; j0; k) � j0 7! a; j � kdl� (i; i0; j; nil)) emp ^ � = � ^ i0 = nil ^ i = jdl� (nil; i0; j; j0)) emp ^ � = � ^ j = nil ^ i0 = j0

www.manaraa.com

Doubly-linked lists are often used to implement queues, be
ause they makeit easy to work at either end. We axiomatize an enqueue operation.Rather than give the
ode all at on
e, it will be helpful to use a pro
edureto en
apsulate the operation of setting a right pointer . Suppose we are in theposition of having a pointer j0, whose di�eren
e �eld represents pointing on theright to, say, j. We want to swing the right pointer so that it points to k instead.The spe
i�
ation of the pro
edure isfdl� (i; nil; j; j0)g setrptr(j; j0; k; i)fdl� (i; nil; k; j0)g:Noti
e that this spe
i�
ation handles the � = �
ase, when j0 does not point toan a
tive
ell.Postponing the de�nition and proof of setrptr for a moment, we
an use itto verify a
ode fragment for putting an value a on the end of a queue.fdl� (front; nil; nil; ba
k)gt := ba
k;fdl� (front; nil; nil; t)gba
k :=
ons(a; nil� t);fdl� (front; nil; nil; t) � ba
k 7! a; nil� tgsetrptr(nil; t; ba
k; front)fdl� (front; nil; ba
k; t) � ba
k 7! a; nil� tgfdl�a (front; nil; nil; ba
k)gThe
ode
reates a new node
ontaining the value a and the di�eren
e nil� t.Then, the pro
edure
all setrptr(nil; t; ba
k; front) swings the right pointerasso
iated with t so that the next node be
omes ba
k. In the assertions, the e�e
tof ba
k :=
ons(a; nil�t) is axiomatized by ta
king �(ba
k 7! a; nil�t) onto itspre
ondition. This sets us up for the
all to setrptr; be
ause of the pla
ementof � we know that the
all will not a�e
t (ba
k 7! a; nil � t). More pre
isely,the triple for the
all is obtained using Variable Substitution to instantiate thespe
i�
ation, and the Frame Rule with (ba
k 7! a; nil� t) as the invariant.Finally, here is an implementation of setrptr(j; j0; k; i).fdl� (i; nil; j; j0)gif j0 = nil thenf� = � ^ emp ^ j0 = nilgi := kf� = � ^ emp ^ j0 = nil ^ i = kgelsef9�0; b; p: (� := �0b) � dl�0 (i; nil; j0; p) � (j0 7! b; j � p)gnewvard: d := [j0 + 1℄; [j0 + 1℄ := k + d� jf9�0; b; p: (� := �0b) � dl�0 (i; nil; j0; p) � (j0 7! b; k � p)gfdl� (i; nil; k; j0)gThe tri
ky part in the veri�
ation is the else bran
h of the
onditional, wherethe
ode has to update the di�eren
e �eld of j0 appropriately so that k be
omesthe next node of j0. It updates the �eld by adding k and subtra
ting j; sin
e

www.manaraa.com

the �eld initially stores j � p, where p is the address of the previous node, su
h
al
ulation results in the value k � p.The use of the temporary variable d in the else bran
h is a minor irritation.We
ould more simply write [j0+1℄ := k+[j0+1℄� j if we were to allow nestingof [�℄. An unresolved question is whether, in our formalism, su
h nesting
ouldbe dealt with in a way simpler than
ompiling it out using temporary variables.Now we sket
h a similar development for
ode that implements a dequeueoperation. In this
ase, we use a pro
edure setlptr(i; i0; k; j0), whi
h is similarto setrptr ex
ept that it swings a pointer to the left instead of to the right.fdl� (i; i0; nil; j0)g setlptr(i; i0; k; j0) fdl� (i; k; nil; j0)gThe dequeue operation removes the �rst element of a queue and pla
es itsdata in x.fdla� (front; nil; nil; ba
k)gf9n0: front 7! a; n0 � nil � dl� (n0; front; nil; ba
k)gx := [front℄; d := [front+ 1℄; n := d+ nil;fx := a � front 7! a; n� nil � dl� (n; front; nil; ba
k)gdispose(front); dispose(front+ 1);fx := a � dl� (n; front; nil; ba
k)gsetlptr(n; front; nil; ba
k)fx := a � dl� (n; nil; nil; ba
k)gThis
ode stores the data of the �rst node in the variable x and obtains thenext pointer n using arithmeti
 with the di�eren
e �eld. The pla
ement of �sets us up for disposing front and front + 1: The pre
ondition to these two
ommands is equivalent to an assertion of the form (front 7! a) � (front+1 7!n0 � nil) � R, whi
h is
ompatible with what is given by two appli
ations ofthe weakest pre
ondition rule for dispose. After the disposals have been done,the pro
edure
all setlptr(n; front; nil; ba
k) resets the di�eren
e �eld of thenode n so that its previous node be
omes nil.The
ode for setlptr(i; i0; k; j0) is as follows.fdl� (i; i0; nil; j0)gif i = nil thenf� = � ^ emp ^ i = nilgj0 := kf� = � ^ emp ^ i = nil ^ k = j0gelsef9�0; a; n: (� := a�0) � dl�0 (n; i; nil; j0) � (i 7! a; n� i0)g[i+ 1℄ := [i+ 1℄ + i0 � kf9�0; a; n: (� := a�0) � dl�0 (n; i; nil; j0) � (i 7! a; n� k)gfdl� (i; k; nil; j0)g

www.manaraa.com

8 Memory Faults and Tight Spe
i�
ationsIn this paper we will not in
lude a semanti
s of
ommands or pre
ise interpreta-tion of triples, but in this se
tion we give an informal dis
ussion of the semanti
properties of triples that the axiom system relies on.Usually, the spe
i�
ation form fPgCfQg is interpreted \loosely", in the sensethat C might
ause state
hanges not des
ribed by the pre and post
ondition.This leads to the need for expli
it frame axioms. An old idea is to instead
on-sider a \tight" interpretation of fPgCfQg, whi
h should guarantee that C onlyalters those resour
es mentioned in P and Q; unfortunately, a pre
ise de�ni-tion of the meaning of tight spe
i�
ations has proven elusive [1℄. However, thedes
ription of lo
al reasoning from the Introdu
tion, where a spe
i�
ation andproof
on
entrate on a
ir
ums
ribed area of memory, requires something liketightness. The need for a tight interpretation is also
lear from the small axioms,or the spe
i�
ations of setlptr, setrptr and CopyTree.To begin, the model here
alls for a notion of memory fault. This
an bepi
tured by imagining that there is an \a

ess bit" asso
iated with ea
h lo
ation,whi
h is on i� the lo
ation is in the domain of the heap. Any attempt to reador write a lo
ation whose a

ess bit is o�
auses a memory fault, so if E is notan a
tive address then [E℄ := E0 or x := [E℄ results in a fault. A simple wayto interpret dispose(E) is so that it faults if E is not an a
tive address, andotherwise turns the a

ess bit o�.Then, a spe
i�
ation fPgCfQg holds i�, whenever C is run in a state satisfy-ing P : (i) it does not generate a fault; and (ii) if it terminates then the �nal statesatis�esQ. (This is a partial
orre
tness interpretation; the total
orre
tness vari-ant alters (ii) by requiring that there are no in�nite redu
tions.) For example,a

ording to the fault-avoiding interpretation, f17 7! {g [17℄ := 4 f17 7! 4g holdsbut ftrueg [17℄ := 4 f17 7! 4g does not. The latter triple fails be
ause the emptyheap satis�es true but [17℄ := 4 generates a memory fault when exe
uted in theempty heap.In the logi
, faults are pre
luded by the assumptions E 7! { and E 7! n inthe pre
onditions of the small axioms for [E℄ := E0, x := [E℄ and dispose(E).The main point of this se
tion is that this fault-avoiding interpretation offPgCfQg gives us a pre
ise formulation of the intuitive notion of tightness. (Weemphasize that this requires faults, or a notion of enabled a
tion, and we do not
laim that it
onstitutes a general analysis of the notion of tight spe
i�
ation.)The avoidan
e of memory faults in spe
i�
ations ensures that a well-spe
i�ed program
an only dereferen
e (or dispose) those heap
ells guar-anteed to exist by the pre
ondition, or those whi
h are allo
ated duringexe
ution.Con
retely, if one exe
utes a program proved to satisfy fPgCfQg, starting in astate satisfying P , then memory a

ess bits are unne
essary. A
onsequen
e isthat it is not ne
essary to expli
itly des
ribe all the heap
ells that don't
hange,be
ause those not mentioned automati
ally stay the same.

www.manaraa.com

Fault avoidan
e in fPgCfQg ensures that if C is run in a state stri
tlylarger than one satisfying P , then any additional
ells must stay un
hanged;an attempt to write any of the additional
ells would falsify the spe
i�
ation,be
ause it would generate a fault when applied to a smaller heap satisfying P .For example, if f17 7! {gC f17 7! 4g holds then f(17 7! {)�(19 7! 3)gC f(17 7!4) � (19 7! 3)g should as well, as mandated by the Frame Rule, be
ause anyattempt to dereferen
e address 19 would falsify f17 7! {gC f17 7! 4g if we giveC a state where the a

ess bit for 19 is turned o�. (This last step is deli
ate,in that one
ould entertain operations, su
h as to test whether an a

ess bit ison, whi
h
ontradi
t it; what is generally needed for it is a notion whi
h
an bedete
ted in the logi
 but not the programming language.)9 Con
lusionWe began the paper by suggesting that the main
hallenge fa
ing veri�
ationformalisms for pointer programs is to
apture the informal lo
al reasoning usedby programmers, or in textbook-style arguments about data stru
tures. Part ofthe diÆ
ulty is that pointers exa
erbate the frame problem [9, 1℄. (It is onlypart of the diÆ
ulty be
ause the frame problem does not, by itself, say anythingabout aliasing.) For imperative programs the problem is to �nd a way, preferablysu

in
t and intuitive, to des
ribe or imply the frame axioms, whi
h say whatmemory
ells are not altered by a program or pro
edure. Standard methods, su
has listing the variables that might be modi�ed, do not work easily for pointerprograms, be
ause there are often many
ells not dire
tly named by variables ina program or program fragment. These
ells might be a

essed by a program byfollowing pointer
hains in memory, or they might not be a

essed even whenthey are rea
hable.The approa
h taken here is based on two ideas. The �rst, des
ribed in Se
tion8, to use a fault-avoiding interpretation of triples to ensure that additional
ells,a
tive but not des
ribed by a pre
ondition, are not altered during exe
ution.The se
ond is to use the �
onne
tive to infer invariant properties implied bythese tight spe
i�
ations.The frame problem for programs is perhaps more approa
hable than the gen-eral frame problem. Programs
ome with a
lear operational semanti
s, and one
an appeal to
on
rete notions su
h as a program's footprint. But the methodshere also appear to be more generally appli
able. It would be interesting to givea pre
ise
omparison with ideas from the AI literature [22℄, as well as with vari-ations on Modi�es
lauses [1, 8℄. We hope to report further on these matters {in parti
ular on the ideas outlined in Se
tion 8 { in the future. (Several relevantdevelopments
an be found in Yang's thesis [24℄.)There are several immediate dire
tions for further work. First, the intera
tionbetween lo
al and global reasoning is in general diÆ
ult, and we do not mean toimply that things always go as smoothly as in the example programs we
hose.They �t our formalism ni
ely be
ause their data stru
tures break naturally intodisjoint parts, and data stru
tures that use more sharing are more diÆ
ult to

www.manaraa.com

handle. This in
ludes tree representations that allow sharing of subtrees, andgraph stru
tures. Yang has treated a nontrivial example, the Shorr-Waite graphmarking algorithm, using the spatial impli
ation �� is used to deal with thesharing found there [23℄. More experien
e is needed in this dire
tion. Again, the
hallenging problem is not to �nd a system that is adequate in prin
iple, butrather is to �nd rules or reasoning idioms that
over
ommon
ases simply andnaturally.Se
ond, the reasoning done in examples in this paper is only semi-formal, be-
ause we have worked semanti
ally when applying the Rule of Consequen
e. Weknow of enough axioms to support a number of examples, but a
omprehensivestudy of the proof theory of the assertion language is needed. Pym has workedout a proof theory of the underlying logi
 BI [17℄ that we
an draw on. But herewe use a spe
i�
 model of BI and thus require an analysis of properties spe
ialto that model. Also needed is a thorough treatment of re
ursive de�nitions ofpredi
ates.Finally, the examples involving address arithmeti
 with di�eren
e-linked listsare simplisti
. It would be interesting to try to verify more substantial programsthat rely essentially on address arithmeti
, su
h as memory allo
ators or garbage
olle
tors.A
knowledgements.O'Hearn would like to thank Ri
hard Bornat, Cristiano Cal
agno and DavidPym for dis
ussions about lo
al reasoning and bun
hed logi
. He was supportedby the EPSRC, under the \Veri�ed Byte
ode" and \Lo
al Reasoning aboutState" grants. Reynolds was supported by NSF grant CCR-9804014. Yang wassupported by the NSF under grant INT-9813854.Referen
es[1℄ A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in pro
edurespe
i�
ations. IEEE Transa
tions of Software Engineering, 21:809{838, 1995.[2℄ R. Bornat. Proving pointer programs in Hoare logi
. Mathemati
s of ProgramConstru
tion, 2000.[3℄ R.M. Burstall. Some te
hniques for proving
orre
tness of programs whi
h alterdata stru
tures. Ma
hine Intelligen
e, 7:23{50, 1972.[4℄ C. Cal
agno, S. Isthiaq, and P. W. O'Hearn. Semanti
 analysis of pointer aliasing,allo
ation and disposal in Hoare logi
. Pro
eedings of the Se
ond InternationalACM SIGPLAN Conferen
e on Prin
iples and Pra
ti
e of De
larative Program-ming, 2000.[5℄ P. Cousot. Methods and logi
s for proving programs. In J. van Leeuwen, editor,Handbook of Theoreti
al Computer S
ien
e, volume B, pages 843{993. Elsevier,Amsterdam, and The MIT Press, Cambridge, Mass., 1990.[6℄ C. A. R. Hoare and J. He. A tra
e model for pointers and obje
ts. In Ra
hid Guer-raoui, editor, ECCOP'99 - Obje
t-Oriented Programming, 13th European Confer-en
e, pages 1{17, 1999. Le
ture Notes in Computer S
ien
e, Vol. 1628, Springer.[7℄ S. Isthiaq and P.W. O'Hearn. BI as an assertion language for mutable data stru
-tures. In Conferen
e Re
ord of the Twenty-Eighth Annual ACM Symposium onPrin
iples of Programming Languages, pages 39{46, London, January 2001.

www.manaraa.com

[8℄ K. R. M. Leino and G. Nelson. Data abstra
tion and information hiding. Te
hni
alReport Reear
h Report 160, Compaq Systems Resear
h Center, Palo Alto, CA,November 2000.[9℄ J. M
Carthy and P. Hayes. Some philosophi
al problems from the standpoint ofarti�
ial intelligen
e. Ma
hine Intelligen
e, 4:463{502, 1969.[10℄ P. W. O'Hearn. Resour
e interpretations, bun
hed impli
ations and the ��-
al
ulus. In Typed �-
al
ulus and Appli
ations, J-Y Girard editor, L'Aquila, Italy,April 1999. Le
ture Notes in Computer S
ien
e 1581.[11℄ P. W. O'Hearn and D. J. Pym. The logi
 of bun
hed impli
ations. Bulletin ofSymboli
 Logi
, 5(2):215{244, June 99.[12℄ P. W. O'Hearn and J. C. Reynolds. From Algol to polymorphi
 linear lambda-
al
ulus. J. ACM, 47(1):267{223, January 2000.[13℄ P. W. O'Hearn and R. D. Tennent. Parametri
ity and lo
al variables. J. ACM,42(3):658{709, May 1995. Also in [14℄, vol 2, pages 109{164.[14℄ P. W. O'Hearn and R. D. Tennent, editors. Algol-like Languages. Two volumes,Birkhauser, Boston, 1997.[15℄ F. J. Oles. A Category-Theoreti
 Approa
h to the Semanti
s of ProgrammingLanguages. Ph.D. thesis, Syra
use University, Syra
use, N.Y., 1982.[16℄ F. J. Oles. Fun
tor
ategories and store shapes. In O'Hearn and Tennent [14℄,pages 3{12. Vol. 2.[17℄ D. J. Pym. The Semanti
s and Proof Theory of the Logi
 of Bun
hed Impli
ations.Monograph to appear, 2001.[18℄ J. C. Reynolds. Synta
ti

ontrol of interferen
e. In Conferen
e Re
ord of theFifth Annual ACM Symposium on Prin
iples of Programming Languages, pages39{46, Tu
son, Arizona, January 1978. ACM, New York. Also in [14℄, vol 1.[19℄ J. C. Reynolds. The essen
e of Algol. In J. W. de Bakker and J. C. van Vliet,editors, Algorithmi
 Languages, pages 345{372, Amsterdam, O
tober 1981. North-Holland, Amsterdam. Also in [14℄, vol 1, pages 67-88.[20℄ J. C. Reynolds. Intuitionisti
 reasoning about shared mutable data stru
ture. InJim Davies, Bill Ros
oe, and Jim Wood
o
k, editors, Millennial Perspe
tives inComputer S
ien
e, pages 303{321, Houndsmill, Hampshire, 2000. Palgrave.[21℄ J. C. Reynolds. Le
tures on reasoning about shared mutable data stru
ture. IFIPWorking Group 2.3 S
hool/Seminar on State-of-the-Art Program Design UsingLogi
. Tandil, Argentina, September 2000.[22℄ M. Shanahan. Solving the Frame Problem: A Mathemati
al Investigation of theCommon Sense Law of Inertia. MIT Press, 1997.[23℄ H. Yang. An example of lo
al reasoning in BI pointer logi
: the S
horr-Waitegraph marking algorithm. Manus
ript, O
tober 2000.[24℄ H. Yang. Lo
al Reasoning for Stateful Programs. Ph.D. thesis, University ofIllinois, Urbana-Champaign, Illinois, USA, 2001 (expe
ted).

